## Conceptual Design Review

AAE 451 - Senior Design; Aircraft Desigı Team 5 - Lamarvelous



By Nathen Carey, Aidan Doyle, Mike Flanagan, Max Gorlich, Jose Lara, Ashwin Nathan, and Dhruv Wadhwa



In this project, our team will design, build, and fly a remote-controlled aircraft around a preconceived flight course. There are several project milestones that we will utilize to show the progression of our design and share any and all major engineering decisions we make. This project milestone is the Conceptual Design Review (CDR).

- Detail the final design of our chosen RC Aircraft
  - Sizing
  - Weights
  - Structures
  - Aerodynamics
  - Propulsion
  - Stability/Controls
- Objectives + High Level Requirements
- Discuss down-selection process
- Cost
- Fabrication/Manufacturing Plan





#### **Project Objective and High Level Requirements**







#### SRR+SDR Final Concepts:



High Wing, Twin Tractor



Low Wing, Single Engine Puller



Blended-Body Single-Engine Pusher





Eliminated Blended Body due to high complexity and high difficulty of construction





## Best Aircraft Concept: Downselection

Decided to Combine other two designs.

- Single Engine Puller for easier construction and less complexity
- High wing allowing better grip for hand throwing take-off



High-Wing Double-Engine











### **Best Aircraft Concept: Design Parameters**

| Gross Weight           | 7.6 lbs / 50% increase is 11.4lbs       |
|------------------------|-----------------------------------------|
| Payload                | 1.136 lb <sub>f</sub>                   |
| Wing Loading           | 1.445 lb <sub>f</sub> / ft <sup>2</sup> |
| Wing Area              | 5.31 ft <sup>2</sup>                    |
| Wing Aspect Ratio      | 4.71                                    |
| Thrust to Weight ratio | 1.31/ 0.87 for 50% increase in weight   |
| Cost                   | \$380.47                                |





#### **Advanced Aircraft Description: External Layout**









#### **Advanced Aircraft Description: Internal Layout**







### Weights and Balance: Group Weight Statement

|            | Weights(lbs) | Location(ft) | Moment(ft-lbs) |
|------------|--------------|--------------|----------------|
| Structures | 3.41         |              | 7.42           |
| Wing       | 1.76         | 1.68         | 2.96           |
| Tail       | 0.66         | 4.5          | 2.97           |
| Fuselage   | 0.99         | 1.5          | 1.49           |

| Propulsion | 1.08 |      | 0.39 |
|------------|------|------|------|
| Motor      | 0.88 | 0.18 | 0.16 |
| ESC        | 0.13 | 0.84 | 0.11 |
| Propeller  | 0.07 | 1.68 | 0.12 |

| Equipment                         | 0.29                 |             | 0.96                                            |
|-----------------------------------|----------------------|-------------|-------------------------------------------------|
| Aileron servos                    | 0.10                 | 2.28        | 0.23                                            |
| Elevator                          | 0.11                 | 4.2         | 0.46                                            |
| Rudder Servo                      | 0.05                 | 4.1         | 0.21                                            |
| Receiver                          | 0.03                 | 2.13        | 0.06                                            |
| Total Empty<br>Weight             | 4.78                 |             | 8.77                                            |
| _                                 |                      |             |                                                 |
| Useful Load                       | 2.21                 |             | 3.41                                            |
| Useful Load<br>Payload            | 2.21<br>1.14         | 1.58        | 3.41<br>1.8                                     |
| Useful Load<br>Payload<br>Battery | 2.21<br>1.14<br>1.07 | 1.58<br>1.5 | <ul><li>3.41</li><li>1.8</li><li>1.61</li></ul> |

12





#### Weights - XFLR5 View



CG is 1.89ft Aft of Nose CG 0.053ft Forward from the Wing Quarter Chord





#### **Structures - Material Selection**

| Structure                            | Materials                    | Reasoning                                                                                                      |
|--------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------|
| Fuselage                             | Balsa Wood                   | Light but relatively strong material,<br>easy to manufacture, relatively low<br>in cost                        |
| Wing - NACA 2415                     | Foam with Aluminium<br>Spars | Easy to manufacture, low in cost.<br>Spars add structural integrity at low<br>cost and weight.                 |
| Horizontal Stabilizer -<br>NACA 0012 | Foam with Aluminium<br>Spars | Similar reasoning to wing.                                                                                     |
| Vertical Stabilizer                  | Balsa Wood                   | Stronger than foam, singular control surface so needs to be more rigid to allow for increased controllability. |





#### **Structure: Critical Load Paths**

- To assist with structural integrity, we will utilize ribs in the fuselage.
- In the wings, we will utilize two thin aluminum rods as spars.
  Minimizes cost and weight.
- Horizontal Stabilizer will feature a structure similar to the wings.







### **Structure: Wing Fuselage Intersection**

- Velcro
  - Hook and Hook Ο
- **Rubber Bands** 
  - Stretch across wings in x shape Ο
  - Connect to pins 0



Surface Area of wing in contact with fuselage: 60in<sup>2</sup> Max Weight capacity of Velcro: 2.5 lbs/in^2

#### Max Weight possible: 150 lbs

Weight of Aircraft: 7.62 lbs Factor of Safety: 1.5 Minimum allowable design weight: 11.4 lbs

Estimated Max force expected: **~ 7 lbf** 







### **Structure: Payload and Battery Placement**

- Small box located between leading edge and nose of the plane
- Will hold both payload and battery.
- Small velcro strips within box will keep items in place.
- ESC on outside of plane to avoid overheating







### Aerodynamic Design: Wing Design

| WING DESIGN  |                      |  |
|--------------|----------------------|--|
| Span         | 5 ft                 |  |
| Chord        | 1.06 ft              |  |
| Area         | 5.31 ft <sup>2</sup> |  |
| Airfoil      | NACA 2415            |  |
| Aspect Ratio | 4.71                 |  |
| Taper        | NONE                 |  |
| Sweep        | NONE                 |  |
| Dihedral     | NONE                 |  |























#### Aerodynamic Design: Drag Buildup

| DRAG BUILDUP (IN CLASS<br>METHOD) |                                      |  |
|-----------------------------------|--------------------------------------|--|
| Parasitic Drag<br>CDo             | 0.02042                              |  |
| Induced Drag at<br>Cruise CDi     | 0.00891                              |  |
| Misc Drag<br>CD,misc              | 0.08*CDo(8%<br>of Parasitic<br>Drag) |  |
| Total CD                          | 0.02933                              |  |

#### Drag Polar from XFLR5







#### Aerodynamic Design: Lift, Drag, and Thrust

|         | Lift (lbf) | Drag(lbf) | Thrust Needed<br>(lbf) | Thrust<br>Available(lbf) |
|---------|------------|-----------|------------------------|--------------------------|
| Takeoff | 16.67      | 1.53      | 1.60                   | 8.31                     |
| Cruise  | 7.67       | 0.92      | 0.92                   | 8.99                     |





#### **Aerodynamics - XFLR5 Plots**

















#### Mission Performance Discussion: Essential Characteristics

| Takeoff Duration      | 1.1 sec   |
|-----------------------|-----------|
| Climb Duration        | 10.63 sec |
| Cruise Duration       | 78.44 sec |
| Descent Duration      | 21.64 sec |
| Total Duration        | 111.8 sec |
| L/D <sub>cruise</sub> | 9.67      |
| Cruise Altitude       | 200 ft    |

| Takeoff Velocity | 12.649 ft/s |
|------------------|-------------|
| Cruise Velocity  | 70 ft/s     |
| Rate of Climb    | 18.8 ft/s   |

| Takeoff Energy Consumption | 40.25 J  |
|----------------------------|----------|
| Climb Energy Consumption   | 2,818 J  |
| Cruise Energy Consumption  | 14,982 J |
| Descent Energy Consumption | 4,788 J  |
| Total Energy Consumption   | 22,628 J |



#### Mission Performance Discussion: Compliance Matrix

| Requirement                      | Threshold                                                                             | Target                                         | Current Value                      |
|----------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|
| Cruise Speed                     | 40 ft/s                                                                               | 70 ft/s                                        | 70 ft/s                            |
| Payload                          | 0.284 lbs                                                                             | 2 lbs                                          | 1.14 lbs                           |
| Ease of Construction             | We need to be able to construct the vehicle before the flight date.                   | Simple structural design using straight edges. | Using Velcro Wing Attachment       |
| Storage and Assembly             | Must fit inside a 30in x 30in x 60in<br>container and be able to assemble on<br>site. | Same as threshold.                             | Fits                               |
| Stability and<br>Controllability | Easy to fly by an external pilot.                                                     | Intuitive controls and stable aircraft.        | Stable                             |
| Range                            | 3600 ft + 6 Turns + Initial Climb                                                     | 1 Mile, 5280 ft                                | Meets Range Threshold              |
| Cost                             | < \$400                                                                               | \$300                                          | 380.47                             |
| Structural Durability            | Must withstand flight conditions and a belly landing.                                 | Same as threshold.                             | Meets except for propellor strike. |





Design Cruise Speed of 40 ft/s

Maneuvering Speed of 30 ft/s









https://www.rcelectricparts.com/80a -esc---classic-series.html

| Propeller  |                | Motor                  |           | LiPo Batt      | ery      | ESC                  |                      |  |  |
|------------|----------------|------------------------|-----------|----------------|----------|----------------------|----------------------|--|--|
| Model      | APC<br>13x6.5E | Model Cobra<br>4130/12 |           | Brand          | Liperior | Brand                | RC Electric<br>Speed |  |  |
| Diameter   | 13.0           | Kv [rpm/V]             | 540       | Capacity [mAh] | 3300     | Max                  | 80                   |  |  |
| [III]      |                | Max Current [A]        | 65        | Discharge [C]  | 30       | Current [A]          |                      |  |  |
| Pitch [in] | 6.5            | Max Power [hp]         | 1.93      | Cells          | 6S       | Burst<br>Current [A] | 100                  |  |  |
|            |                |                        |           |                |          | Voltage<br>Range [V] | 6-26                 |  |  |
|            |                | DEC                    | 6 Ampo of |                |          |                      |                      |  |  |





| Burst<br>Current [A] | 100                    |
|----------------------|------------------------|
| Voltage<br>Range [V] | 6-26                   |
| BEC<br>Output        | 6 Amps at<br>5.5 Volts |





#### **Propulsion**

| / |                           |           | Power                                                             | Power Plant                                                                                        |  |  |  |  |  |
|---|---------------------------|-----------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|
|   | Power Co                  | onstraint | Max Current                                                       | 51 38                                                                                              |  |  |  |  |  |
|   | Model                     |           | Draw [A]                                                          | 01.00                                                                                              |  |  |  |  |  |
|   | Weight<br>[lbf]           | 7.672     | Electrical<br>Power [hp]                                          | 1.41                                                                                               |  |  |  |  |  |
|   | Safety<br>Factor          | 1.5       | Mechanical<br>Power [hp]                                          | 1.29                                                                                               |  |  |  |  |  |
|   | Safety<br>Weight*         | 11.508    | T/W*                                                              | 0.87                                                                                               |  |  |  |  |  |
|   | [lbf]                     |           | Max RPM                                                           | 10,152                                                                                             |  |  |  |  |  |
|   | Power<br>Required<br>[hp] | 1.03      | Calculations perfor<br>Celsius, o ft Altitud<br>Max Thrust = 4540 | Calculations performed at 4 degree<br>Celsius, o ft Altitude.<br>Max Thrust = 4540.5 grams = 10.01 |  |  |  |  |  |

lb<sub>f</sub>







We used Raymer Equations to size our horizontal and vertical stabilizers

| Vertical<br>Tail   | Span = 0.80 ft<br>c = 0.53 ft (taper = 0.65)<br>$c_t = 0.61$ ft, $c_r = 0.30$ ft | AR = 1.5<br>Lv = 2.52 ft  |
|--------------------|----------------------------------------------------------------------------------|---------------------------|
| Horizontal<br>Tail | Span = 1.78 ft<br>c = 0.76 ft (taper = 0.6)<br>$c_t = 0.57$ ft, $c_r = 0.94$ ft  | AR = 2.35<br>Lh = 2.52 ft |









We used Raymer Equations to size our horizontal and vertical stabilizers







#### **Stability and Control**



Positive  $C_{m,o}$ , negative  $C_{m,alpha}$ 

Longitudinal Stability prerequisite met.

**Neutral Point**  $x_{NP} = 0.524$  ft (aft of LE)

**Static Margin** =  $(x_{CG} - x_{NP}) = -.31 -> 31\%$ 





Ailerons  $\rightarrow$  35% span of wing, 25% chord of wing Rudder  $\rightarrow$  90% span of Horizontal Tail, 30% chord of Horizontal Tail Elevators  $\rightarrow$  92.5% span of Vertical Tail, 32.5% chord of Vertical Tail

|          | Span    | Chord   |
|----------|---------|---------|
| Ailerons | 1.75 ft | 0.27 ft |
| Rudder   | 0.72 ft | 0.16 ft |
| Elevator | 1.65 ft | 0.25 ft |







### **Servos Sizing and Placement**

Elevator: 1 x HS-311 Standard Voltage Resin Gear 24T Analog Sport Servo

Ailerons and Rudder: 3 x EMAX ES08MA II 12g Metal Gear Servo

| Servo                | Count | Stall<br>Torque<br>(oz-in) | Weight<br>(oz) | Max<br>Current<br>(mA) | Voltage<br>(V) | Cost per<br>Servo<br>(\$) |
|----------------------|-------|----------------------------|----------------|------------------------|----------------|---------------------------|
| HS-311               | 1     | 42-49                      | 1.51           | 800                    | 4.8 - 6        | 13.49                     |
| EMAX<br>ES08MA<br>II | 3     | 21-28                      | 0.42           | 500                    | 4.8 - 6        | 7.75                      |







#### **Aircraft Cost**

| Budget<br>Sector | Number of<br>Components | Total Cost (\$) |
|------------------|-------------------------|-----------------|
| Propulsion       | 4                       | 193.7           |
| Control          | 4                       | 58.22           |
| Structure        | 7                       | 128.55          |
| Total            | 15                      | 380.47          |







#### **Fabrication Gantt Chart**

| Fabrication + Manufacturing Gar    | ntt Chart | -      |        |        |        |        |        |        |        |        |        |       |       |       |       |       |
|------------------------------------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|
|                                    | 21-Oct    | 22-Oct | 23-Oct | 24-Oct | 25-Oct | 26-Oct | 27-Oct | 28-Oct | 29-Oct | 30-Oct | 31-Oct | 1-Nov | 2-Nov | 3-Nov | 4-Nov | 5-Nov |
| Aircraft Construction              |           |        |        |        |        |        |        |        |        |        |        |       |       |       |       |       |
| Wing Construction                  |           |        |        |        |        |        |        |        |        |        |        |       |       |       |       |       |
| Fuselage Construction              |           |        |        |        |        |        |        |        |        |        |        |       |       |       |       |       |
| Battery and Payload inlet addition |           |        |        |        |        |        |        |        |        |        |        |       |       |       |       |       |
| Vertical Stabilizer Construction   |           |        |        |        |        |        |        |        |        |        |        |       |       |       |       |       |
| Horizontal Stabilizer Construction |           |        |        |        |        |        |        |        |        |        |        |       |       |       |       |       |
| Wing to Fuselage Connection        |           |        |        |        |        |        |        |        |        |        |        |       |       |       |       |       |
| Prop to Fuselage Connection        |           |        |        |        |        |        |        |        |        |        |        |       |       |       |       |       |
| Tail to Fuselage Connection        |           |        |        |        |        |        |        |        |        |        |        |       |       |       |       |       |
| Servo Addition                     |           |        |        |        |        |        |        |        |        |        |        |       |       |       |       |       |
| Debug/Check                        |           |        |        |        |        |        |        |        |        |        |        |       |       |       |       |       |





#### **Manufacturing Method**

- Wing
  - Foam Cutter
    - Airfoil
    - Spar channels
  - Glue
    - Spar into channel
- Horizontal Stabilizers
  - Foam Cutter
    - Tapered airfoil
  - Hand cut
    - Fit around ribs of fuselage
- Fuselage
  - Laser Cut
  - Glue together

- Vertical Stabilizers • Laser Cut
- Control Surfaces
  - Cut out same process as their main component
  - Hinge to help support control surface
  - Servo arm attached hinges







Simons, Martin. Model Aircraft Aerodynamics. 5th ed., Special Interest Model Books, 2015.

Lennon, Andy. Basics of R/C Model Aircraft Design: Practical Techniques for Building Better Models. Air Age Media, 2005.

"Building with Foam." RC Groups, Verticalscope Inc. www.rcgroups.com.

"Selecting Materials for RC Plane Construction." RC Airplane World www.rc-airplane-world.com/





# Thank you! - Questions?